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Al-aided attacks

Profile a target
to increase success [2]
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Craft an email to bypass filters [1] “;,’:/’
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Mutate malware to bypass AV [3, 4]
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Execute machine-speed/creative attacks [5, 6]
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[1] S. Palka et al., “Fuzzing Email Filters with Generative Grammars and N-Gram Analysis”, Usenix WOOT 2015
[2] A. Singh and V. Thaware, “Wire Me through Machine Learning”, Black Hat USA 2017

[3] 3. Jung et al., “AVPASS: Automatically Bypassing Android Malware Detection System”, Black Hat USA 2017
[4] H. Anderson, “Bot vs. Bot: Evading Machine Learning Malware Detection”, Black Hat USA 2017

[5] DARPA Cyber Grand Challenge (CGC), 2016
[6] D. Petro and B. Morris, “Weaponizing Machine Learning: Humanity was Overrated Anyway”, DEF CON 2017
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Al-aided attacks
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Malware concealment — Locksmithing
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s 1980 1990 2000 2010 >
Obfuscation Encryption Evasive malware Targeted attack
Mutate payload Hide payload Avoid being analyzed Disclose only at a target
Polymorphism Packers VM check Target attributes check
Metamorphism Processes check
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AI Locksmithing
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Unleashing Deeplocker — AI Locksmithing
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DeeplLocker — Overview

: Evading
Benign static, dynamic, manual analysis
application
. Security analysis
Existing
malware . .
DeepLocker Benign-looking
malware
Target
attributes
AI-powered concealment ‘] \\‘L/ )= Execution at non-target
, L \\..} Benign behavior
Tommn | Execution at target
- Malicious behavior
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Distribution & execution
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Traditional targeted attack

Stuxnet
RegKeyExists(“HKLM\ SOFTWARE\SIEMENS\STEP7")




Al-powered targeted attack
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What is a Deep Neural Network (DNN)?

Sigmoid()
tanh()
ReLU()
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Deep Convolutional Neural Network

Input Layer Hidden Layers Output Layer

AlexNet (2012) 11
8 layers, 622K neurons, 60 million parameters

[1] Krizhevsky, Alex, et. al. "Imagenet classification with deep convolutional neural networks.” NIPS 2012.
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Target attributes

Audio, visual

Software
environment

Physical
environment

Sensors User activity

Geolocation
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Target deteCtiOn Template matching requires a

template to match to.

Extracted Reference
Face Face

/ BIIN

No

\ 4
A

Iﬂéﬁhkha&

UsA 2018



Derivation of an unlocking key

4 DeepLocker )
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DeeplLocker — AI-Powered Concealment and Unlocking

Malicious

= Target attributes Target Concealment Secret key payload Payload Concealment
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Concealed .
Input attributes Target Detection Recovered key payload Payload Unlocking

blgck hat

UsA 2018

Concealed
payload

Malicious
payload



AI-powered concealment
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No decryption key
available in malware
sample to reverse
engineer!
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Key generation

Unstable key!

Face Detection
Model

! [> : Bucketization [>

High-dimensional
facial features

Target
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Key generation
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Face Detection
Model

High-dimensional
facial features

Key Generation
Model

Class 1
Class 2
Class 3
Class 4
Class 5




Analysis of the key generation model

Target Detection
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Dataset: Labeled Faces in the Wild (LFW)
http://vis-www.cs.umass.edu/lfw/
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DeepLocker — AI-powered concealment

3 Malicious Intent Concealment
o

Payload is fully encrypted concealing
how the final attack is executed

2 Target Instance Concealment
o

If the target class is an individual, it
does not reveal who it is looking for

1 Target Class Concealment
®
Does not reveal what it is looking for (e.g.,
faces, organization, or a completely obscure
object specific to the target environment)
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Attacking DeeplLocker — AI Lock Picking




Ways to counter

=0 AI-powered
concealment

Payload
execution

DeepLocker
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Ways to counter

Payload
execution

Code attestation

Host-based monitoring

Brute-force key

Deceptive resources

Code analysis
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Block sensor access

AI usage monitoring
Brute-force attributes

Deceptive attributes

AT lock picking
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Reverse engineering AI models

Partial
occlusion

Occlude a portion of the image to
see how the embedding is
affected (deconvnet) [1]
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Neural attention Debug neural
model networks

Heatmap using the degree of Fuzzing for neural networks
excitation of neurons in each (coverage-guided fuzzing) [3]

layer (excitation backprop) [2]

[1] M. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” ECCV 2014
[2] 3. Zhang et. al., “Top-down neural attention by excitation backprop,” ECCV 2016
[3] A. Odena and I. Goodfellow, “TensorFuzz: Debugging neural networks with coverage-guided fuzzing,” arXiv 2018




Takeaways

Rapid democratization of AI has made

Al-powered attacks an imminent threat

DeeplLocker is a demonstration of the potential of

Al-embedded attacks

Current defenses will become obsolete and

new defenses are needed
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Thank you

Dhilung Kirat D< dkirat@us.ibm.com
Jiyong Jang DX jjang@us.ibm.com
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